Nonlinear vibrations of the Euler-Bernoulli beam subject to transversal load and impact actions

Authors

Abstract

In this work vibrations of a flexible nonlinear Euler-Bernoulli-type beam, driven by a dynamic load and with various boundary conditions at its edge, including an impact, are studied. The governing equations include damping terms, with damping coefficients $\epsilon_1,\epsilon_2$ associated with velocities of the vertical deflection $w$ and horizontal displacement $u$, respectively. Damping coefficients $\epsilon_1,\epsilon_2$ and transversal loads $q_0$ and $\omega_p$ serve as the control parameters in the problem. The continuous problem is reduced to a finite-dimensional one by applying finite differences with respect to the spatial coordinates, and is solved via the fourth-order Runge-Kutta method. This approach enables the identification of damping coefficients, as well as the investigations of elastic waves generated by the impact of rigid mass moving at constant velocity $V$.

Published

2011-08-25

Issue

Section

Articles

How to Cite

Nonlinear vibrations of the Euler-Bernoulli beam subject to transversal load and impact actions. (2011). Nonlinear Studies, 18(3). https://nonlinearstudies.com/index.php/nonlinear/article/view/578