Topological derivative for shallow water equations

Authors

  • Mame Gor Ngom Laboratoire de Math\'ematiques de la D\'ecision et d'Analyse Num\'erique\\ Equipe de recherche: Analyse Non-Lin\'eaire et G\'eom\'etrie/UAD,\\ Universit\'e Gamal Abdel Nasser de Conakry, FST, BP 1147, Conakry, Guinea
  • Ibrahima Faye Laboratoire de Math\'ematiques de la D\'ecision et d'Analyse Num\'erique\\ Equipe de recherche: Analyse Non-Lin\'eaire et G\'eom\'etrie/UAD,\\ Universit\'e Alioune Diop de Bambey, UFR S.A.T.I.C, BP 30 Bambey S\'en\'egal
  • Diaraf Seck Laboratoire de Math\'ematiques de la D\'ecision et d'Analyse Num\'erique\\ Universit\'e Cheikh Anta Diop de Dakar, FASEG, BP 5683 Dakar Fann, S\'en\'egal

Abstract

Coastal erosion is a major and growing environmental problem that describes the movement of sand caused by tides, waves or currents. Several phenomena contribute to the significant advance of the sea. These include climate change, with rising sea levels due to the melting of ice at the Earth's poles, the amplification of the tidal effect, leading to the transport of large masses of sand, storms, etc. We contribute to this problem by using topological shape optimization techniques applied to a PDE model describing coastal erosion. We use shallow water equations as a model.

Published

2025-03-01

How to Cite

Topological derivative for shallow water equations. (2025). Nonlinear Studies, 32(1), 269-302. https://nonlinearstudies.com/index.php/nonlinear/article/view/3834