Fractional Sobolev space with variable exponents: Study of Kirchhoff problem by Berkovits degree theory
Abstract
This paper discusses a class of This paper discusses a class of Kirchhoff boundary value problem that involve the fractional $\tau(\cdot)$-Laplacian operator of the form\begin{equation*} \begin{cases} \Big(\alpha+\beta[u]_{s,\tau}\Big)\left(-\Delta\right)_{\tau(x,\cdot)}^{s} u(x)+|u(x)|^{r(x)-2} u(x)=\xi|u(x)|^{\mu(x)-2} u(x) & \text { in } \Omega, \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega . \end{cases}\end{equation*}where $\om$ is a smooth bounded domain in $\R^N$, $(N\geq2)$, $0<s<1$, $\xi$ is a positive parameter.Utilizing Berkovits degree theory with thetheory of fractional Sobolev spaces with variable exponents, we demonstrate the existence of nontrivial weak solutions for this problem.
Published
Issue
Section
License
Copyright (c) 2024 Arhrrabi i Elhoussain, El-Houari Hamza
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.