Aero-viscoelastic deformation responses to chaotic rolling forces by wings possessing random generalized temperature dependent linear or nonlinear constitutive relations and nonlinear failure conditions

  • Harry H. Hilton University of Illinois at Urbana-Champaign



The application of chaos theory to forces inducing rolling maneuvers by acting on linear or nonlinear temperature dependent viscoelastic wings with actual widely scattered random material properties %\bod{hss17mesa} is investigated in detail. Published experimental data shows widely scattered 1--D viscoelastic moduli and small excursions from average or beginning values -- the basis for chaos theory -- is realistically inapplicable and would simply constitute a purely academic exercise excursion.
While conventional approaches have been associated with applied forces, such as probability theory, to characterize these deterministic and stochastic properties, chaos theory is offered as an additional alternate generalized protocol to characterize viscoelastic responses to chaotic flight loads. At this time unfortunately no deterministic, stochastic or chaotic experimental data seems to be available, nor experimental data on aero-viscoelastic structural responses to flight vehicle maneuvers at any temperature.

With currently seriously absent multi--D or even 2--D or 3--D deterministic or stochastic viscoelastic experimental material property data (constitutive and failure relations), a general analysis, that includes proper physical BCs and ICs, is formulated in terms of series functions with open arbitrary coefficients where data can be inserted to evaluate these coefficients through least squares (LSQ) fits if and when 1--D and multi--D experimental data becomes available.